Lake Ontario and the St. Lawrence River
A New Path Forward

Pursuing A Balanced Approach
The History, Challenges and Proposed Future Management of Water Levels and Flows

Making Your Voice Heard
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Lake Ontario and the St. Lawrence River (LOSLR): A New Path Forward</td>
<td></td>
</tr>
<tr>
<td>Background</td>
<td>3</td>
</tr>
<tr>
<td>The History of Water Flows and Water Regulation in the LOSLR System</td>
<td></td>
</tr>
<tr>
<td>Challenges</td>
<td>9</td>
</tr>
<tr>
<td>Current Challenges</td>
<td></td>
</tr>
<tr>
<td>Solution</td>
<td>13</td>
</tr>
<tr>
<td>A Potential New Approach</td>
<td></td>
</tr>
<tr>
<td>Public Process</td>
<td>31</td>
</tr>
<tr>
<td>Public Involvement</td>
<td></td>
</tr>
<tr>
<td>Voice Your Comments</td>
<td>35</td>
</tr>
</tbody>
</table>
Introduction

Lake Ontario and the St. Lawrence River (LOSLR):
A New Path Forward

The International Joint Commission (IJC) is developing a new approach for managing water levels and flows in the Lake Ontario-St. Lawrence River system. The system’s current water regulation plan has become outdated. It is unable to deal with future conditions and has hurt the region’s ecosystem. The IJC’s proposed approach attempts to balance the region’s many interests, and ensure it has a water regulation system that can address current and future challenges.

The IJC is the binational organization established in 1909 to help Canada and the United States manage the waters shared by the two countries in a cooperative manner. In 1952, the IJC approved an application from the two federal governments to construct a hydropower project in the international section of the St. Lawrence River that provided some ability to regulate water levels on Lake Ontario and the river. Since 1963, the IJC has relied on the same water regulation plan to provide some control over the flows and water levels in the basin. But that plan is now nearly fifty years old. It is based on water conditions of the last century, has no regard for environmental consequences and no process for adapting to possible future challenges such as bigger storms, more severe droughts and increasing effects of climate change.
Background

The History of Water Flows and Water Regulation in the LOSLR System
History of Water Regulation in the LOSLR Basin

Given the diverse interests and needs along Lake Ontario and the St. Lawrence River, regulating water levels and flows is a complex task.

In 1909, as part of the Boundary Waters Treaty, the International Joint Commission was established to help manage the shared waters along the Canadian-U.S. border. During the 1950's, the IJC approved the construction and operation of a hydropower project in the international section of the St. Lawrence River for the purpose of producing hydroelectricity, enabling seaway navigation and providing some flood protection to Lake Ontario and the St. Lawrence River. Flows through the Moses-Saunders Dam would also be regulated so that the lower St. Lawrence River received no less protection than with unregulated flows. Under the treaty, the IJC is tasked with ensuring that all affected interests are considered in decisions that change the levels and flows of boundary waters.

In light of record floods in the early 1950’s, the governments of Canada and the United States asked the IJC to investigate whether water levels could be regulated for the benefit of property owners on Lake Ontario, while “having regard to all other interests” in the basin and how they would be impacted by such regulation. The IJC found that Lake Ontario could be regulated between a low of 74.15 m in the navigation season and a high of 75.37 m (243.29 and 247.29 feet, respectively) based on water supplies recorded between 1860 and 1954. The governments approved this target range of water levels and the regulation plan recommended by the IJC, called Plan 12-A-9. While this particular regulation plan was never implemented, it was used to calculate river profiles and design channel excavations for safe navigation through the seaway. The target range of Lake Ontario levels, however, was retained in subsequent plan development.

It was recognized that if water supplies were outside of the 1860-1954 range used for design, that lake levels might not be able to be kept within the target range. As a result, the IJC included guidance for operating in such conditions. The guidance directed that the works be operated to provide relief to upstream and downstream shore property owners if supplies were greater than the design range and to provide relief for hydropower and navigation in times of supplies lower than the design set. Since regulation began, this directive has been invoked eight times (most recently in 1998) to address extremes outside the historical range.

In 1960, the IJC implemented a new water regulation plan known as Plan 1958-A. That plan was soon reevaluated due to problems with low water levels, particularly in the Port of Montreal. As part of that evaluation, the International St. Lawrence River Board of Control (Board) — which the IJC created to help monitor and manage the basin’s water levels — was given authority to deviate from the regulation plan when relief could be provided to one or more interests without causing undue harm to other interests. In 1962, Plan 1958-C became operational, which provided more stable minimum water levels through reductions in summer flows and minimum winter flows.

In January 1963, the IJC asked the Board to proceed with further studies on ways to improve the regulation plan. The resulting plan, 1958-D, would...
improve water levels at Montreal Harbor without reducing the minimum winter flows of Plan 1958-C. Plan 1958-D was made operational in October 1963 and has remained the regulation plan for Lake Ontario and the St. Lawrence River ever since.

In some areas, shoreline development in the region has continued to grow. New homes have been built, many residents have converted summer cottages to year-round residences, and recreational boating has become a significant economic activity. But greater development has also meant that some shoreline areas have felt greater impacts from fluctuating water levels, particularly on occasions when water supplies have been more extreme than Plan 1958-D was designed to handle. As a result, there has been growing dissatisfaction with the current regulation plan.

In 2000, the IJC began a new International Lake Ontario-St. Lawrence River Study with financial support from the two federal governments. The five-year, $20 million study provided new insights into the shortcomings of the current water regulation plan, and outlined how system regulation might be improved.

After the study was released, the IJC proposed implementing a modified version of one of the water regulation plans recommended by the study. After holding extensive public hearings on the issue, the IJC elected to withdraw that proposal — known as plan 2007 — due to various concerns that were raised. Yet the underlying problems and challenges with the current regulation regime (Plan 1958D with deviations) have remained.

Why Water Levels Fluctuate

Even with the hydropower dam, water levels on the lake and river are determined largely by natural factors such as precipitation, evaporation and runoff.

Unregulated and uncontrolled flows into the lake and river abound. For example, an average of 80 percent of the water flowing into Lake Ontario comes from Lake Erie over Niagara Falls and partially controlled water from the Ottawa River has a major influence on water levels in the Montreal area and downstream.
Challenges

Current Challenges
The current approach to regulation has brought many benefits to the Lake Ontario-St. Lawrence River basin, but it also has had damaging consequences to the region’s environment and is ill-equipped to deal with possible future water supply scenarios. A new approach to water levels and flows is necessary because of some key challenges.

The Current Approach is Outdated

The current approach to regulation is based on conditions from the last century, relying on the water supplies to Lake Ontario recorded from the 1860’s to the 1950’s to set the target range of levels and design the regulation plan. This creates an unrealistic expectation that Lake Ontario water levels can be regulated within a four-foot range (approx. 1.2 meters). However, it is not possible to keep the lake within the four-foot range under extreme water supply conditions, such as those experienced on several occasions since regulation began. Our expectations about water levels must be based on what we know today, not just on what we understood fifty years ago. The data, technology, and understanding of the causes and effects of fluctuating water levels are vastly superior today to what existed in 1963, when the current plan was instituted. An updated approach to water levels and flows can reflect what has been learned over the past fifty years, and better respond to the region’s diverse and changing needs.

The Current Approach is Not Able to Deal with Future Challenges

Just as the region’s population, economy, mix of water uses and scientific knowledge are very different today than they were fifty years ago when the current water regulation plan was implemented, the conditions of the future will be different than those of today. The current plan is designed for past conditions, not future ones. It lacks a structured approach to monitor performance and make adjustments when necessary.

A new approach needs to include a system for monitoring the social, economic and environmental impacts of water level regulation, and how global climate change may affect future water supplies and storm events in the basin. Such an approach should allow the IJC’s Board to evaluate long-term changes, and be more responsive to future challenges and to the people and interests in the basin.

A new approach needs to include a system for monitoring the social, economic and environmental impacts of water level regulation, and how global climate change may affect future water supplies and storm events in the basin. Such an approach should allow the IJC’s Board to evaluate long-term changes, and be more responsive to future challenges and to the people and interests in the basin.

The Current Approach Does Not Take the Environment into Consideration

The current regulation plan has altered the natural patterns of water level fluctuations on Lake Ontario and the upper St. Lawrence River, and has severely stressed the coastal wetlands. Why is this important? Because healthy wetlands are critical to the well-being of water ecosystems and to sustainable development.

Regulation has reduced the diversity of plant life in coastal wetlands, particularly the diverse wetland meadow marsh community that thrives between long-term high and long-term average water levels. Plant species within the meadow marsh community do not tolerate prolonged flooding, but occasional flooding is required to prevent woody plant species from expanding downslope. More importantly, periodic low water-level cycles are required to allow seeds in the bank to germinate and also to arrest the expansion of aggressive emergent plants, such as cattails, upslope into the meadow marsh community. Regulation has disrupted the cycles of wetland rejuvenation and created conditions that favor areas dominated by cattails. In addition, the steeper fall drawdown of Lake Ontario under regulation has reduced needed access to wetlands by fish in the spring.

A more diverse ecosystem can better resist impacts from environmental threats such as pollution and invasive species. Lake Ontario and upper St. Lawrence River coastal wetlands provide breeding and feeding grounds for most coastal life, including several species at risk. Water level patterns have a direct influence on the breeding and nesting success of marsh birds, fish and amphibians that inhabit the marshes. More varied water levels also create more variety in marsh plants, which creates a more productive and robust coastal ecosystem.
For example, Eel Bay is an open embayment wetland surrounded by a state park in the Thousand Islands region of the upper St. Lawrence River. Since regulation began, the diverse wetland meadow marsh community in Eel Bay has almost completely been replaced with cattails. While coastal wetlands on Lake Ontario and the St. Lawrence River have also been impacted by development and pollution, the reduction in diversity seen at Eel Bay is typical of the degradation resulting from water level regulation. It is estimated that more than 50 percent of the meadow marsh wetland area that occurred on Lake Ontario and the upper St. Lawrence River during the mid- to late 1960s has been displaced by cattail-dominated emergent marsh. At many study sites, the loss in area of meadow marsh vegetation since the 1960s exceeds 80 percent.

If action is not taken to restore more natural patterns to the region’s water levels and flows, environmental damage to the lake and river will continue. Valuable wetlands will continue to be lost, biodiversity in Lake Ontario and the upper St. Lawrence River will continue to suffer, and the region will not enjoy the improved quality of life or economic opportunities provided by a healthier environment.

A Modern Approach to Water Management

The new approach uses state-of-the-art analytical techniques and improved data to address the challenges of today and prepare for the challenges of tomorrow. It includes a modern regulation plan and an adaptive management strategy based on a new generation of data and tools. The new approach will also include new policies, such as an Order of Approval and Deviations Policy, which are currently being drafted for public review.

Advances in understanding form the basis for the new approach, which seeks to restore greater balance to the region's regulation of water levels and flows. Studies show that modest changes in water level variability on Lake Ontario and the upper St. Lawrence River would help restore the region's wetlands and contribute significantly to a healthier lake and river. At the same time, other basin interests would retain most of the benefits they now receive in the form of reduced extreme high and low water levels. Expected results and any unforeseen consequences would be systematically monitored and evaluated under the adaptive management strategy.

We know we must prepare for conditions that are wetter and drier than those the current approach was based on. Plan Bv7, the IJC’s proposed regulation plan, is designed to perform under a more realistic range of water supplies, including those experienced since the 1950s and statistically-generated water supply scenarios that are more extreme, but still considered to be likely under the current climate regime. The proposed plan also incorporates practical experience gained from 50 years of operation under many different water supply and ice conditions, including measures to prevent the most damaging extreme high lake levels.

The International Lake Ontario-St. Lawrence River Study generated a wealth of new knowledge on how water level regulation affects basin interests, including environmental, coastal property, recreational boating, municipal and industrial water uses, commercial navigation, and hydropower. After evaluating over 400 environmental performance indicators, the study analyzed 32 that were sensitive to water levels and representative of ecosystem health. Effects to property were estimated from a parcel database of buildings and shore protection structures, building elevations, 40 years of hourly wave height and direction data including storm surges, and historical erosion rates. Effects to recreational boating were estimated from an inventory of all marinas, yacht clubs and launch ramps, as well as surveys of boaters and charter and tour boat operators. Commercial navigation impacts were assessed based on ship movements and ton-km travel times related to water depths and channel velocities. The value of hydropower energy was assessed based on station head, flow, turbine efficiency and price of electricity. Effects on municipal and industrial water uses were estimated from an inventory of water supply and wastewater plants and depth and location of intakes. Substantial work after the study to complete the coastal parcel database in Canada and on Lake St. Lawrence, and refine the models of environmental performance and flow management during ice formation has strengthened our understanding of how water levels regulation affects basin interests.

A New Regulation Plan

The proposed regulation plan will specify the operational rules for managing Lake Ontario outflows at the Moses-Saunders Dam. It is called Plan Bv7 because it is version seven of Plan B that was developed during the International Lake Ontario-St. Lawrence River Study. Plan Bv7 was developed and analyzed by technical experts from governmental agencies in Canada and the United States who participated in the study.

Plan Bv7 attempts to more closely follow natural patterns of water levels and flows than the current regulation plan. Compared to the current plan, it allows more variability in water levels from year to year on Lake Ontario and the upper St. Lawrence River in order to improve the health and diversity of coastal wetlands. Compared to the natural state, it substantially reduces the frequency and duration of extreme water levels throughout the Lake Ontario-St. Lawrence River system to nearly the same degree as the current plan.

Using the water supplies experienced during the 20th Century, Plan Bv7 would raise the maximum level of Lake Ontario under the most extreme
circumstances by 6 centimeters (2.4 inches) from 75.68 meters to 75.74 meters (from 248.3 feet to 248.5 feet) compared to the current plan. It would lower the minimum level by 21 centimeters (8 inches) from 73.78 meters to 73.57 meters (from 242.1 feet to 241.4 feet) compared the current plan.

The tables below show the standard plan comparison with the range of levels that would be experienced on Lake Ontario and Lac St. Louis 90 percent of the time using the same water supplies.

More graphs and tables comparing the effects of regulation plans at various locations in the Lake Ontario-St. Lawrence River system can be found in the online Library at http://ijc.org/loslr.

Plan Comparison for Lake Ontario

<table>
<thead>
<tr>
<th></th>
<th>Plan 1958DD</th>
<th>Plan Bv7</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>High water supplies</td>
<td>75.20 m</td>
<td>246.7 ft</td>
<td>75.34 m 247.2 ft</td>
</tr>
<tr>
<td>Average water supplies</td>
<td>74.74 m</td>
<td>245.2 ft</td>
<td>74.80 m 245.4 ft</td>
</tr>
<tr>
<td>Low water supplies</td>
<td>74.30 m</td>
<td>243.8 ft</td>
<td>74.26 m 243.6 ft</td>
</tr>
</tbody>
</table>

Plan Comparison for Lac St. Louis

<table>
<thead>
<tr>
<th></th>
<th>Plan 1958DD</th>
<th>Plan Bv7</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>High water supplies</td>
<td>21.97 m</td>
<td>72.0 ft</td>
<td>21.97 m 72.0 ft</td>
</tr>
<tr>
<td>Average water supplies</td>
<td>21.17 m</td>
<td>69.5 ft</td>
<td>21.17 m 69.5 ft</td>
</tr>
<tr>
<td>Low water supplies</td>
<td>20.61 m</td>
<td>67.6 ft</td>
<td>20.60 m 67.6 ft</td>
</tr>
</tbody>
</table>
These graphs compare simulated Plan Bv7 levels to the actual recorded water levels. The simulated Plan Bv7 levels were reviewed on a week-by-week basis to include flow adjustments and deviations from the plan flow that the IJC Board would likely have made in response to actual circumstances during this time period.
These graphs compare simulated Plan BV7 levels to the actual recorded water levels. The simulated Plan BV7 levels were reviewed on a week-by-week basis to include flow adjustments and deviations from the plan flow that the IJC Board would likely have made in response to actual circumstances during this time period.
Restoring the Region’s Environment: Taking a Balanced Approach

While water levels in the lake and river are primarily determined by natural factors such as precipitation and runoff, the regulation of water levels and flows has provided great benefits to those who live, work and recreate in the Lake Ontario St. Lawrence River (LOSLR) basin.

The proposed new and more balanced approach to flow management seeks to create more natural water levels in the lake and river while continuing to provide the basin community with substantial benefits. At the same time, some groups and communities would see some changes to the benefits they receive under the current plan.

Environment

The proposed plan is expected to significantly improve the health of Lake Ontario and the upper St. Lawrence River. In particular, it would improve the diversity and functioning of the coastal wetlands that cover 26,000 hectares (64,000 acres), filter runoff reduce erosion and provide habitat for hundreds of fish and wildlife species. How can we measure this environmental improvement? A key indicator is the growth of a highly diverse plant community, known as wetland meadow marsh, following periods of low water supply. Under the proposed regulation plan, the portion of coastal wetlands with conditions that favor meadow marsh would be more than 40 percent greater on Lake Ontario and the upper St. Lawrence River than the area with favorable conditions under the current plan, restoring diversity to thousands of hectares of wetlands.

There are several reasons why the wetland meadow marsh community is an excellent indicator of ecosystem health on Lake Ontario and the upper St. Lawrence River. First, wetland meadow marsh is ecologically significant in its own right and provides diverse habitat for many animal species. Second, it is sensitive to changes in the patterns of water level fluctuations caused by the regulation plan. Third, there is a high degree of certainty in the results. Field surveys and aerial photography show that the plant communities in coastal wetlands correlate strongly with the history of flooding and dewatering at specific locations. Finally, the indicator is broadly representative and generally consistent with results for other indicators, including shore birds, fish and other animals.

For the lower St. Lawrence River, modeling results do not show significant environmental changes under the proposed regulation plan. The difference between regulation plans is dampened by the variations in water levels caused by other factors such as inflows from the Ottawa River.

A table on the following page summarizes the results for key environmental indicators on Lake Ontario, the upper St. Lawrence River and lower St. Lawrence River.

Costal Property

The current regulation plan -- 1958D with deviations -- has substantially reduced damages for Lake Ontario shoreline property owners relative to what would have occurred without regulation. Despite these benefits, the current plan cannot and has not eliminated all damages to shoreline residents caused by flooding, erosion, or shore protection maintenance as a result of water level fluctuations, wind, waves, storm surges, ice and natural shoreline processes.

Regardless of the regulation plan in place, shoreline residents affected by changing water levels and flows must continue to prepare for and adapt to the dynamic conditions found along the shoreline of Lake Ontario and the St. Lawrence River.

The proposed regulation plan, while still maintaining many of the benefits provided by the current regulation plan, may reduce benefits to Lake Ontario shoreline property owners. While it is not expected that economic damages due to erosion or first floor flooding will be much greater than impacts that would occur under Plan 1958D with deviations, the life span of existing shoreline protection structures could be reduced for Lake Ontario shoreline properties. Downstream interests on the lower St. Lawrence River, though still at risk of damages, will experience about the same benefits under the proposed plan as realized by the current regulation plan.
Recreational Boating

Recreational boaters could also see some changes due to the slightly more variable water levels from year to year under the proposed new approach.

Boaters on the lake and upper river would see more gradual declines in water levels in the fall. At the same time, during low water years, there could be fewer recreational boating days.

Recreational boaters along the lower St. Lawrence River will see little change. This is because the lower river already sees more fluctuations in water levels due to the variable flows of the Ottawa River and other rivers further downstream.

Industry

Commercial navigation could see fewer delays in the Montreal-Lake Ontario section of the seaway. Commercial navigation at the Port of Montreal and downstream would be largely unaffected by the proposed new approach. The more stable and predictable flows would be expected to provide economic benefits to the region’s hydropower plants. In cases of extremely low water levels, the proposed new approach would provide relief to navigation and power interests.

There would be no significant economic impacts to the region’s municipal and industrial water users.

Environmental Performance Indicators – 101-Year Supply Sequence

The environmental performance indicators integrate extensive data on how ecosystems respond to patterns of water level fluctuations. Recorded water supplies for the Twentieth Century were used to simulate water levels. Plan 1958DD is used as the basis of comparison. Positive changes are shown in blue while negative changes are shown in red. Values shown in grey were considered to show no significant change. Indicators were selected based on their sensitivity to water-level regulation, ecological significance and ability to more generally represent ecosystem health.
Economic Performance Indicators – Stochastic Supply Sequence

Planning for the future: Adaptive Management Strategy

Even under the best of circumstances, it is impossible to predict water supplies from year to year. This is especially true given the uncertain impact of global climate change on the Great Lakes. The proposed approach would include an Adaptive Management strategy to monitor and assess conditions on the lake and river in order to refine the plan as needed.

Because of the complexity of the LOSLR system, Adaptive Management is critical to achieving the goals of the proposed approach. Adaptive Management is a scientific, structured process of monitoring and research that allows decisions to be reviewed, adjusted and revised as new information and knowledge becomes available and/or as conditions change.

The Adaptive Management system will feature ongoing monitoring of the impacts of the regulation plan on specific interests, including:

- Assessing whether the plan is having the intended result, particularly related to the environmental benefits on Lake Ontario and the upper river;
- Verifying whether assumptions about the sensitivity of Lake Ontario shoreline property to water level changes;
- Monitoring the adaptability of Lake Ontario and upper St. Lawrence River recreational boating to occasional low water conditions and the importance of higher water levels in the fall;
- Verifying that that environmental, economic and social benefits for the lower St. Lawrence River are similar to those under current regulation;
- Improving water level and supply forecasting in the Great Lakes and St. Lawrence River basins for better plan performance.

Economic Performance Indicators – Stochastic Supply Sequence

Average Net Discounted Economic Benefits in Millions of Dollars per Year (Stochastic Analysis)

<table>
<thead>
<tr>
<th>Scenario</th>
<th>1958DD</th>
<th>Unregulated Levels</th>
<th>Bv7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>$0.00</td>
<td>-$15.16</td>
<td>$3.39</td>
</tr>
<tr>
<td>COASTAL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ontario</td>
<td>$0.00</td>
<td>-$28.50</td>
<td>-$3.11</td>
</tr>
<tr>
<td>Shore Protection Maintenance</td>
<td>$0.00</td>
<td>-$19.85</td>
<td>-$2.62</td>
</tr>
<tr>
<td>Unconsntricted Developed Parcels</td>
<td>$0.00</td>
<td>-$30.58</td>
<td>-$0.16</td>
</tr>
<tr>
<td>Flooding</td>
<td>$0.00</td>
<td>-$5.72</td>
<td>-$0.31</td>
</tr>
<tr>
<td>Upper St. Lawrence River</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flooding</td>
<td>$0.00</td>
<td>-$0.85</td>
<td>-$0.03</td>
</tr>
<tr>
<td>St. Lawrence</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flooding</td>
<td>$0.00</td>
<td>-$0.49</td>
<td>$0.01</td>
</tr>
<tr>
<td>Shore Protection Maintenance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ontario</td>
<td>$0.00</td>
<td>-$3.21</td>
<td>$1.74</td>
</tr>
<tr>
<td>COMMERCIAL NAVIGATION</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ontario</td>
<td>$0.00</td>
<td>-$0.02</td>
<td>-$0.01</td>
</tr>
<tr>
<td>HYDROPOWER</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ontario</td>
<td>$0.00</td>
<td>$12.59</td>
<td>$5.40</td>
</tr>
<tr>
<td>NYPA-QPG</td>
<td>$0.00</td>
<td>$6.77</td>
<td>$3.44</td>
</tr>
<tr>
<td>Hydro Quebec</td>
<td>$0.00</td>
<td>$3.02</td>
<td>$1.96</td>
</tr>
<tr>
<td>RECREATIONAL BOATING</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Above Dam</td>
<td>$0.00</td>
<td>-$15.31</td>
<td>-$1.36</td>
</tr>
<tr>
<td>Ontario</td>
<td>$0.00</td>
<td>-$15.93</td>
<td>-$1.13</td>
</tr>
<tr>
<td>Alex Bay</td>
<td>$0.00</td>
<td>-$0.36</td>
<td>-$0.23</td>
</tr>
<tr>
<td>Ogdenburg</td>
<td>$0.00</td>
<td>-$0.07</td>
<td>-$0.02</td>
</tr>
<tr>
<td>Lake St. Lawrence</td>
<td>$0.00</td>
<td>$0.05</td>
<td>$0.04</td>
</tr>
<tr>
<td>Below Dam</td>
<td>$0.00</td>
<td>$1.05</td>
<td>$0.73</td>
</tr>
<tr>
<td>Lac St. Louis</td>
<td>$0.00</td>
<td>$0.13</td>
<td>$0.45</td>
</tr>
<tr>
<td>Montreal</td>
<td>$0.00</td>
<td>$0.04</td>
<td>$0.21</td>
</tr>
<tr>
<td>Lac St. Pierre</td>
<td>$0.00</td>
<td>$0.10</td>
<td>$0.07</td>
</tr>
<tr>
<td>MAI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SL One time infrastructure costs</td>
<td>$0.00</td>
<td>$0.00</td>
<td>$0.00</td>
</tr>
<tr>
<td>SSD Water Quality Investments</td>
<td>$0.00</td>
<td>$0.00</td>
<td>$0.00</td>
</tr>
</tbody>
</table>

The economic performance indicators integrate extensive data on each user group, and how they are affected by various risk factors such as water levels and storms, into a single dollar value. The tables compare the change in economic benefits that would result from Plan Bv7 and unregulated levels, using Plan 1958DD as a basis of comparison. Increases in benefits compared to Plan 1958DD are shown in blue while decreases are shown in red. The stochastic water supply sequence was statistically generated from recorded supplies. It includes periods that are wetter and drier than the recorded supplies, which results in larger economic impacts.

1 - Not modeled using stochastic hydrology because historic results were similar for all plans
2 - Using Yin Fan's wetland model following Wilcox description
The U.S. Army Corps of Engineers and Environment Canada have both expressed willingness to lead an Adaptive Management strategy. The strategy will require funding for a three-year start-up period followed by dedicated funding on an annual basis. The LOSLR Working Group — a team of federal, state and provincial agency managers — is seeking to identify the necessary resources within the basin’s governments for the strategy.

A New Order of Approval

The new Order of Approval will provide the policy framework for the new approach. It will establish the criteria for regulating the outflow from Lake Ontario through the Moses-Saunders Dam. In the current 1956 Order, for example, criteria (a) through (k) specify maximum outflows from Lake Ontario, minimum levels at Montreal Harbour and a target range of levels on Lake Ontario that should be met when water supplies are not more extreme than those experienced prior to 1954. The Order also creates a Board to oversee the Order's implementation.

The Order ensures compliance with the Boundary Waters Treaty, the 1909 treaty established to help manage the shared waters along the Canadian-U.S. border. In particular, water uses should not conflict with those given a higher priority in Article VIII of the treaty. Under Article VIII, the IJC shall also require that suitable and adequate provision be made for all interests that may be injured by changes in natural water levels resulting from the construction or operation of the dam. The IJC will seek the concurrence of the federal governments of Canada and the United States before implementing a new Order.

Deviations Policy

The current Order of Approval is based on the 1860-1954 historic record of water supplies. When supplies are outside of this historic range, flows through the dam are set by the IJC's Board rather than by the regulation plan. During times when supplies are above the historic range, flow decisions are made to provide all possible relief to coastal communities and property owners upstream and downstream of the dam. When supplies are below the historic range, flows are set to provide relief to navigation and hydropower interests. The new Order will also provide for deviations during extreme water supply conditions, but such deviations would be required less frequently because the new regulation plan would function over a wider range of conditions than the current one, and it is based on experience gained from the past.

In addition, the new Order will continue to provide authority for deviations and adjustments from the regulation plan to meet short-term needs. These include ice management needs; emergency situations such as failure of a lock, flooding of the hydropower plant or large-scale black out; assistance to commercial vessels; and flow changes to assist with recreational boat haul out at the end of the season. Flows will be adjusted as soon as conditions permit to offset the effect of short-term deviations on Lake Ontario water levels. Finally, flows through the dam will also be adjusted when conditions, such as ice conditions on the St. Lawrence River and springtime Ottawa River flows, change from forecasted conditions. Guidelines are being developed for deviations and other flow adjustments.
Public Process

Public Involvement
Public Process

Listening to all interests

At each step of the process, the IJC is working to include a diverse set of viewpoints and consider all stakeholders.

The Lake Ontario-St. Lawrence River basin is home to nearly 12 million people, diverse ecosystems, and many billions of dollars in economic activity. Any sound approach to regulating water flows and levels must be balanced amongst these many interests, but this is no easy task.

Different groups along the lake and river experience unique benefits and challenges when water levels are at different stages. Some groups, such as shoreline property owners, may reap more benefits when water levels are slightly lower. Other groups, such as recreational boaters, commercial shippers and electric utilities, may reap more benefits when water levels are slightly higher.

In addition, some groups may prefer to see water levels remain relatively constant while other interests, such as the system’s environment, require greater variation in water levels to remain strong and vibrant.

On top of all that, various communities along the lake, the upper river and the lower river have different and sometimes conflicting interests.

One of the IJC’s core responsibilities is to ensure that all affected interests — including those along the lake, upper river and lower river — are considered in decisions that affect the natural levels and flows of boundary waters. So while developing a new proposed approach to water levels and flows, the IJC has worked to ensure that there is a thorough and inclusive process that considers all of the region’s diverse interests.

A long-term study with significant public involvement

The proposed new approach to water regulation is based on the comprehensive five-year scientific Lake Ontario St. Lawrence River Study led by experts from both Canada and the United States.

The study filled in critical information gaps about the impact the current regulation plan is having on the basin’s communities and its ecosystem. It also directly involved a wide range of stakeholders in developing three alternative regulations plans for consideration by the IJC.

Stakeholders participated throughout the study organization and helped build a shared vision model. Alternative plans were refined after being tested at public meetings throughout the basin.

The IJC proposed implementing a modified version of one of these plans, and held extensive public hearings to gain feedback from the community. After hearing significant concerns about the proposal, the IJC withdrew that plan. At that point, the IJC invited basin governments to participate in a Working Group process to consider other alternatives.

Seeking input from basin governments that represent the region’s communities and interests

The LOSLR Working Group is an ad hoc advisory panel that works with the IJC and technical experts from agencies in Canada and the United States. The Working Group includes members from the governments of Canada, the United States, New York, Ontario and Quebec, as well as IJC staff.

In considering a new approach over the past two years, the Working Group has considered the findings of the LOSLR Study as well as the comments from stakeholders throughout the basin.
Public meetings and hearings before any decision is made

Before any approach is finalized, there will be significant opportunities for public review and input. The IJC will hold public information sessions in late spring of 2012 that will allow for open dialogue, and ample opportunities for questions from the public about the proposed new approach. The IJC will then develop a proposal that will include a revised order of approval, regulation plan, adaptive management plan and a governance structure, and hold formal public hearings on the proposal before arriving at a decision.

Improvements to Governance

Under the proposed approach, the existing International St. Lawrence River Board of Control — which oversees and implements the Order of Approval — would be reconstituted as the International Lake Ontario-St. Lawrence River Board. The functions of the new Board will be similar to the existing Board, but its responsibilities, structure, membership, supporting committees and funding will be modified to fit with the new approach. The Board will continue to conduct public outreach events to hear from people around the basin, and better understand the impacts of their decisions. In addition, a new reporting structure would be established to review monitoring data, evaluate the performance of the regulation plan and advise the Board under the adaptive management strategy.

Voice Your Comments

The IJC is committed to a thorough and inclusive process that considers the comments and concerns of everyone who shares an interest in Lake Ontario St. Lawrence River basin. No final approach will be determined and no final decision will be made until the public has ample time to weigh in.

We need your thoughts, ideas and criticisms of the proposed new approach so that we can develop a workable and sustainable plan for the basin’s future.

Please take the time to visit our website at www.ijc.org/loslr and leave your comments there, or write to us:

U.S. Section Office (Washington)

Frank Bevacqua
Public Information Officer
2000 L Street, NW Suite #615
Washington, DC 20440
Phone: 202-736-9024
Fax: 202-632-2006
Email: bevacquaf@washington.ijc.org

Canadian Section Office (Ottawa)

Bernard Beckhoff
Public Affairs Adviser
234 Laurier Avenue West, 22nd Floor
Ottawa, ON K1P 6K6
Phone: 613-947-1420
Fax: 613-993-5583
Email: beckhoffb@ottawa.ijc.org